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Abstract

Ultrafine particles (UFPs) pose a human health risk as they can penetrate deep into the respiratory 

system. The Harvard supersite in Boston, MA provides one of the longest time series of UFP 

concentrations. This study examined the hypothesis that long-term reductions in PM2.5 mass and 

sulfur have influenced UFP trends by limiting the ability of UFPs to coagulate onto the 

accumulation mode via polydisperse coagulation with larger particles. The study used Generalized 

Additive Models (GAMs) to assess whether changes in PM2.5 mass and sulfur concentrations 

resulted in smaller than expected (assuming no change in PM2.5 mass or sulfur) decreases in daily 

UFP trends over the 20-year period from 1999 to 2018. The impact of PM2.5 mass and sulfur 

changes were represented as UFP penalties. Bootstrapping was applied to calculate standard errors 

for the different trend and penalty estimates. Results showed that PM2.5 mass and sulfur 

concentrations declined significantly over the study period. The analysis found an estimated 7.3% 

(95% CI: 3.5, 11.1%) UFP penalty due to long-term PM2.5 mass trends, and a 9.9% (95% CI: 6.2, 

13.7%) UFP penalty due to long-term sulfur trends. Findings from this study suggest that future 

UFP control efforts should account for the role of PM2.5 mass and sulfur changes.
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INTRODUCTION

Epidemiological studies have established an association between particle pollution exposure 

and adverse respiratory and cardiovascular outcomes (HEI 2013, Baldauf et al. 2016). 

Ultrafine particles (UFPs), less than 100 nm in diameter, represent the smallest size fraction 

on the particle continuum. Early animal and in vitro evidence led to the hypothesis that 

UFPs have greater toxicity than larger particles due to their ability to: a) penetrate deep into 

the respiratory system; and b) provide a large surface area for transmitting toxics (HEI 

2013). Recent studies have suggested evidence of short-term respiratory and cardiovascular 

effects attributable to UFPs (Baldauf et al. 2016). Large cohort studies in the Boston area 

have demonstrated links between exposure to traffic-related particles such as UFPs and 

multiple cardiovascular effects including impacts on cardiac autonomic function, increased 

systemic cytokine-mediated inflammation and pro-thrombotic activity, and increased risk of 

hypertension and ischemic stroke (Jhun et al. 2019).

Historically, UFPs have been challenging to study for a variety of reasons. First, they are not 

routinely monitored in most locations. Second, relative to larger particles, UFPs tend to have 

more varied number, size and spatial distribution. This variability may be due to factors such 

as wind speed and direction, seasonality, and boundary layer height (Kumar et al. 2014). 

Finally, UFPs have negligible mass. Therefore, they contribute little to fine particulate matter 

(PM2.5) mass. Instead, they are the main contributors to Particle Number (PN). PN 

concentrations indicate the number of particles per unit volume of air and act as a proxy for 

UFPs (HEI 2013).

UFPs are emitted by combustion sources such as traffic-related emissions, industrial 

activities, waste incineration, biomass burning and home heating via natural gas, as well as 

non-combustion sources (Masiol et al. 2013, Massachusetts Government 2020). They are 

also formed by nucleation. One of the UFP removal mechanisms is polydisperse coagulation 

with larger particles, especially those present in the accumulation mode. The difference in 

particle sizes in polydisperse coagulation allows for faster coagulation, even at relatively low 

concentrations (Hinds 1999). A higher concentration of accumulation mode particles creates 

a larger condensation sink for precursor vapors of particle formation and hinders nucleation 

(McMurry & Friedlander 1979). The result is less UFP formation and lower UFP 

concentrations (Wu et al. 2007). Regional nucleation events have also been documented in 

U.S. cities when PM2.5 mass is low (Baldauf et al. 2016). Other studies have applied 

modeling approaches to data in Europe and the eastern U.S. to identify an inverse 

association between the accumulation mode and UFPs. Specifically, they have found that a 

decrease in PM2.5 mass can lead to an increase in UFPs through: 1) slower polydisperse 

coagulation of PM2.5 mass and UFPs and 2) accelerated nucleation (Gaydos et al., 2018; 

Patoulias et al., 2018). Our study adds to this body of work by utilizing long-term 

monitoring data. Therefore, due to the tendency toward polydisperse coagulation, it is 

expected that UFP levels depend on the concentrations of PM2.5 mass and sulfur (S), which 

are mostly present in the accumulation mode. As a result, the effectiveness of UFP control 

strategies depends on changes in PM2.5 mass and S. This study aimed to improve 

understanding of the relationship between PM2.5 mass, S, and UFPs, given the relevance to 

potential air quality control efforts in the future. Both PM2.5 mass and S concentrations have 
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declined significantly over the past several decades due to national and regional regulatory 

changes such as the National Ambient Air Quality Standards, power plant controls, and low 

S fuel requirements (Hand 2012, Jhun 2013). Others have suggested that the relationship 

between PM2.5 mass and UFP concentrations is complex, and that regulations targeting 

PM2.5 control do not necessarily translate to UFP reductions (de Jesus et al., 2019). We 

hypothesized that reductions in PM2.5 mass and S concentrations may have impacted UFP 

levels, resulting in the unintended consequence of a smaller than expected decline in UFP 

concentrations over the 20-year study period from 1999 to 2018.

MATERIALS AND METHODS

Data Collection

Daily concentrations of UFPs, PM2.5 mass, and S were estimated using measurements 

conducted at the Harvard-EPA Clean Air Research Center monitoring site (Harvard 

supersite), located atop the Countway Library of Harvard Medical School near downtown 

Boston, from October 1999 through October 2018. The Harvard supersite is uniquely 

positioned to study UFPs as it provides one of the longest time series with data available as 

early as 1999. PN concentrations as a surrogate of UFP were measured continuously using a 

Condensation Particle Counter (CPC Model 3022A, TSI Incorporated, St. Paul, MN). This 

was averaged over the daily PM2.5 collection hours for further analysis. Daily integrated 

PM2.5 mass samples were conducted using Harvard Impactor samplers (Kang et al., 2010). 

PM2.5 mass and S levels were measured using gravimetric analysis and Energy Dispersive 

X-Ray Fluorescence (EDXRF, Model Epsilon 5, PANalytical, The Netherlands) 

spectroscopy (Kang et al. 2010, Kang et al. 2014, Masri et al., 2016). Relative humidity and 

wind speed data were measured at the Logan International Airport weather station. In 

addition, boundary layer height data were obtained from the NOAA Eta Data Assimilation 

System (EDAS). All analyses were conducted at the Harvard School of Public Health.

Regression Analysis

Long-term daily trends for UFPs were assessed by fitting Generalized Additive Models 

(GAMs) to log-transformed daily concentrations using R 3.5.1 software. GAMs have been 

used in other pollutant trend analyses as they offer flexibility that is not possible in a linear 

regression model. GAMs do not impose any assumptions on the shape or nature of the 

relationship between predictors such as weather variables and outcome (Dominici 2002). We 

applied GAMs to accommodate non-parametric relationships between some of the 

predictors and the outcome through the application of smoothing splines. We estimated the 

impacts of PM2.5 mass and S changes on UFP concentrations from 1999 to 2018. The 

analytical steps included: 1) calculating central estimates, and; 2) conducting bootstrap 

analysis to calculate standard errors (Requia et al. 2019 and Jhun et al. 2015).

Central estimates

In step 1 (central estimates), we utilized two models to estimate long-term UFP trends. 

Equation 1 was used for the unadjusted model, which did not include either PM2.5 mass or 

S. Equation 2 shows the adjusted model, which included PM2.5 mass or S.
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Log(UFP) = β0 + β1tday + β2tcat + β3montℎ + β4weekday + β5s(RH) + β6s
(W S) + β7s PBL (1)

Log(UFP) = β′0 + β′1tday + β′2tcat + β′3montℎ + β′4weekday + β′5s(RH)
+ β′6s(W S) + β′7s(PBL) + β′8PM2 . 5 or S (2)

β0′  and β0 are the regression intercepts for the adjusted and unadjusted models, respectively. 

β1′  and β1 are the coefficients for pollutant-adjusted and unadjusted trends (percent change in 

UFPs per day). Models included two types of time variables: daily (tday) and categorical 

(tcat). Adjustment for categorical time accounted for baseline shifts in data collection at the 

Harvard supersite over the study period. Four distinct time periods were defined based on 

breakpoints identified by the ‘segmented’ package in R: 1) October 1999-June 2009; 2) June 

2009-February 2014; 3) February 2014-October 2015; and 4) October 2015-October 2018. 

The baseline shifts are believed to be related to economic activity and are discussed in more 

detail in the Results and Discussion sections.

Models also controlled for month and weekday. Month accounts for expected seasonal 

variations in UFP concentrations, with January as the reference month. Weekday controls for 

differences in workday versus weekend pollutant concentrations, given that traffic conditions 

and associated motor vehicle emissions are often worse on weekdays. Sunday was the 

reference day of the week. Finally, models incorporated several weather-related covariates 

known to influence particle concentrations, namely, wind speed (WS), relative humidity 

(RH), and planetary boundary layer (PBL) height. s() represents the smoothing spline 

function to characterize non-parametric relationships between certain predictors (wind 

speed, relative humidity, boundary layer height, PM2.5, and S) and daily UFP concentrations. 

These were estimated using the MGCV package’s GAM function, which uses Generalized 

Cross Validation (GCV) as the default method for choosing the smoothing parameters.

To estimate the daily impact of the past PM2.5 mass and S-related changes on UFP trends 

(“UFP penalty”), we calculated the difference between the daily time coefficient in the 

unadjusted model, β1, and the daily time coefficient in the adjusted model, β1′ , as shown in 

eq 3.

UFP Penalty (% change day−1) = (β1 − β1′)*100 (3)

The PM2.5 mass or S impact on UFP concentrations is captured by the daily time coefficient 

(β1) in the unadjusted model. After adjusting for PM2.5 mass or S in model (2), we are left 

with trends that assume PM2.5 mass or S remained constant during the study period. This is 

not the case for the unadjusted model (1), where the impact of PM2.5 or S is incorporated 

into β1 (Jhun et al. 2015). Therefore, the difference between the unadjusted and adjusted 

trends (β1 − β1′ ) represents the daily impact of the long-term PM2.5 mass or S changes, 

respectively. A positive penalty indicates changes in PM2.5 mass or S led to UFP increases. 

In contrast, negative penalties point out that PM2.5 mass or S led to UFP decreases. (Jhun et 
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al., 2015). Since UFP concentration is on the log scale, the penalties can be interpreted as 

percent daily changes after multiplying by 100 as shown in eq 3. For ease of interpretation 

since we were using daily time variables, the estimated daily percent penalties were 

transformed into: a) annual penalties by multiplying by 365 days; and b) penalties over the 

20-year study period by multiplying by the number of days in the study period (6,959).

Bootstrap analysis and standard error

In step 2 (bootstrap analysis), bootstrapping was used to estimate standard errors for the 

UFP penalties. The bootstrap was based on 100 randomized subsets (pseudo-datasets), 

which accounted for serial correlation structures among the UFP observations (Jhun et al. 

2015 and Requia et al. 2019). The adjusted and unadjusted regression models were applied 

for each pseudo-dataset and the penalty was estimated. Using the standard deviations from 

the 100 pseudo-datasets, standard errors were estimated for the daily-unadjusted trend, 

adjusted trend and penalty. Corresponding standard error estimates were calculated for the 

annual and study period trends and penalties by multiplying by 365 days and 6,959 days, 

respectively.

Sensitivity analysis was conducted to assess whether the model was robust to the exclusion 

of the categorical time variables. The same bootstrapping analysis methods described above 

were applied to estimate the standard errors for the penalties.

RESULTS

Ultrafine Concentration Trends, 1999–2018

Figure 1 presents a time series of the log of the UFP concentrations (number cm−3), which 

demonstrated a general decline over the study period. However, patterns were observed in 

the data due to changing baselines in data collection at the supersite. Time was accordingly 

categorized into four distinct periods as described in the Methods section with jumps likely 

attributable to recovery-related activity following the economic recession, and local 

construction in the Longwood medical area in 2015.

PM2.5 Mass and S Concentration Trends, 1999–2018

As expected, PM2.5 mass and S concentrations in Boston both demonstrated a significant 

decline over the study period because of air pollution regulations (Figures 2 and 3). 

Applying a linear trend line, PM2.5 mass declined at an average rate of 0.38 μg m−3 annually 

(3.7%). Over the study period, average PM2.5 mass declined by an estimated 7.57 μg m-3. 

Applying a linear trend line, S declined at an average rate of 0.06 μg m−3 annually (6.9%). 

Over the study period, average S concentrations declined by an estimated 1.10 μg m-3.

UFP Penalties due to PM2.5 Mass and S

The best fitting unadjusted model for changes in UFP concentrations had an R2 of 0.64. The 

time and weather covariates were statistically significant predictors at the 0.01 alpha level. 

Figure 4 depicts the estimated annual UFP penalties associated with PM2.5 and S reductions. 

Study period penalties were calculated over the 6,959 sample observations. All penalties 

were positive, indicating that there was an effect where changes in PM2.5 mass or S led to 
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UFP increases. If PM2.5 mass levels had not changed, UFP concentrations would have 

declined by an additional 0.4% (95% CI: 0.2%, 0.6%) per year, or 7.3% (95% CI: 3.5%, 

11.1%) over the 20-year study period. A slightly steeper UFP penalty was observed for S. In 

the absence of changes in S levels, there would have been an additional 0.5% (95% CI: 

0.3%, 0.7%) annual reduction in UFP concentrations, adding up to an additional 9.9% (95% 

CI: 6.2%, 13.7%) reduction over the study period.

Sensitivity Analysis

Overall, the penalty results were robust to the removal of the date categories. As shown in 

Table 1, the estimated UFP penalties due to PM2.5 mass and S were in the same direction 

and of similar magnitude to those obtained in the full model with the categorical date 

variables included. The confidence intervals for the estimated penalties were overlapping for 

PM2.5 mass. The study period penalty due to PM2.5 mass in the full model was 7.3% (95% 

CI: 3.5%, 11.1%), compared to 9.7% (95% CI: 7.4%, 11.9%) in the model without 

categorical time. The study period penalty due to S in the full model was 9.9% (95% CI: 

6.2%, 13.7%), compared to 17.4% (95% CI: 14.9%, 19.9%) in the model without categorical 

time.

DISCUSSION

This study aimed to evaluate the long-term trends in PM2.5 mass, S and UFP concentrations 

in the Boston area from 1999 to 2018, and to test the hypothesis that PM2.5 mass and S 

concentration decreases had a significant impact on UFP concentrations. To accomplish this, 

unadjusted and adjusted GAM regression models were built and compared to estimate UFP 

penalties associated with PM2.5 mass and S changes, respectively. Subsequently, 

bootstrapping methods were applied to estimate standard errors. This section first addresses 

the long-term concentration trends, then the estimated penalties, and finally the sensitivity 

analysis and study limitations.

Overall, this study identified significant long-term reductions in PM2.5 mass and S 

concentrations in the Boston area from 1999 to 2018. This result is consistent with national 

level policy changes aimed at air pollution control. The United States has seen substantial 

declines in S emissions due to acid rain regulations and emissions standards for on-road 

vehicles (Masiol et al. 2018). The highway diesel fuel S program has resulted in a national 

transition from low S diesel (LSD) to ultra-low sulfur diesel (ULSD) fuel starting in 2006 

(Wang et al. 2011). Diesel fuel regulations also affect particle emissions, as diesel vehicles 

emit more particles per vehicle-km than those with gasoline engines (Kumar et al. 2014).

Furthermore, eastern Massachusetts has implemented several regulatory changes, which 

have lowered S and particle pollution concentrations, including bus retrofits, heating oil 

regulations, and a green taxi program in Boston. In 2006, the Metropolitan Boston 

Transportation Authority (MBTA) retrofitted or replaced its buses with lower-emission 

models. The MBTA introduced its first fuel cell bus into service in 2016. As of 2017, the 

MBTA operated more than 200 diesel-hybrid buses (MBTA 2019). In the state of 

Massachusetts, heating oil retailers were required to meet a low-S requirement effective July 

1, 2014. The Massachusetts Department of Environmental Protection (DEP) limited S to 550 
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ppm in distillate oil (MA DEP 2019). Locally in the city of Boston, the Clean Air Cabs 

program was launched in April 2007. The program encourages the replacement of older 

taxis with hybrid and alternative fuel models. As of March 2009, 10% of taxis were hybrids. 

In 2012, the largest taxis company had 400 hybrid cars in its fleet of 500 (BPHC 2019).

As for consistency with other pollutant trend analyses in the region, significant decreases in 

PM2.5 mass, S and UFPs have been reported for New England for 2000–2008. This analysis 

builds on that earlier work by examining data through 2018. Though our study considered S 

rather than sulfate trends, we can directly compare the percentage decline. From 2000 to 

2008, the PM2.5 mass concentrations decreased by 2.29 μg m−3 at an annual rate of 3.2% 

(Lee et al. 2014). We found a comparable PM2.5 mass concentration decline of 3.7% per 

year. S concentrations fell at an annual rate of 2.4% in New England and 6.2% across the 

United States (Lee et al. 2014, Hand et al. 2012). Our study indicated roughly equivalent 

rates of decline (6.9%).

This Boston area study employed one of the few long-running time series available for UFP 

data in the United States. In Rochester, NY, investigators found UFP declines of about 5% 

per year from 2002–2016 (Masiol et al 2018). Although UFP trends are largely driven by 

local emissions sources, it is instructive to compare the results as there are notable parallels. 

Both studies found strong declines between 2005 and 2011. The Rochester study observed 

unexplained UFP increases in the first half of 2012. This Boston study likewise saw an 

uptick in mid-2011, which may be associated with renewed activity following the economic 

recession (i.e., prime mortgage crisis). Both studies demonstrated small upward trends 

between 2015 and 2016, continuing into 2018 for the Boston study. Local construction in the 

Longwood medical area likely contributed to the UFP increase observed at the Harvard 

supersite in recent years.

The unadjusted model for UFP concentration changes had an R2 of 0.64, with the time and 

weather covariates (month, weekday, wind speed, relative humidity, and planetary boundary 

layer height) all attaining statistical significance at the 0.01 alpha level. Month was used as 

the proxy for season in this analysis. Other studies have also noted seasonal variations in 

UFP trends. It is likely that higher UFP concentrations tend to occur in winter months 

because lower temperatures enhance UFP formation (Wang et al. 2011). Low wind speed 

and boundary layer height also play a role in raising UFP concentrations (Kumar et al. 

2014). Based on the Harvard supersite data, we know that wind speed in Boston has 

decreased in recent years. Meanwhile, construction projects in the Longwood area have 

added to the density of high-rise buildings, while also generating UFPs. This can lead to less 

room for air exchange and UFP dispersion, and higher UFP concentrations (Kumar et al. 

2014).

The penalty analysis results corroborated the study hypothesis that long-term reductions in 

PM2.5 mass and S concentrations led to smaller than expected declines in UFP 

concentrations over the 20-year study period. The results revealed small but significant 

penalties, specifically, an estimated 7.3% (95% CI: 3.5, 11.1%) UFP penalty due to long-

term PM2.5 mass trends, and a 9.9% (95% CI: 6.2, 13.7%) UFP penalty due to long-term S 

trends from 1999 to 2018. This study found that UFP levels depend on the concentrations of 
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PM2.5 mass and S, which are mostly present in the accumulation mode. This suggests that 

the effectiveness of UFP control strategies will depend on changes in PM2.5 mass and S.

The long-term UFP effects associated with S were stronger than the effects associated with 

PM2.5 mass changes. S is mostly present in the accumulation mode, whereas PM2.5 can 

include particles >1 μm and <0.1 μm. Therefore, not all PM2.5 is in the accumulation mode. 

This may explain why UFP trends are more sensitive to S changes.

Since the daily UFP data did not demonstrate a uniform trend, date categories were added to 

the regression models. The categories were created using the ‘segmented’ package in R and 

align well with known changes in the equipment performance as well as construction 

activity and policy changes in the supersite area. Sensitivity analysis was conducted to 

ensure that the estimated penalties were not an artifact of the date categories that were 

created for the UFP trend data. This analysis determined that the penalty results were robust 

to the removal of the categorical time variables. While the full model with date categories 

included was a better fit, the estimated penalties were in the same direction and of similar 

magnitude.

This study had several limitations. First, the study relies on data from a single monitoring 

site. A single site may not always be representative of regional trends, and follow-up studies 

would be recommended to corroborate these findings. Second, while the Boston supersite 

provides one of the longest running time series of UFP data, some observations were 

missing over the 20-year study period. Approximately 11.5% of the UFP data, 10.0% of the 

PM2.5 mass data, and 10.3% of the S data were missing over the study period. These missing 

observations were dropped from the penalty and bootstrapping analyses. Third, we were 

limited in terms of which species we could examine for potential impact on UFP trends 

based on the data available over the entire 20-year study period at the supersite. For 

example, we did not look at the role of changing gasoline formulations and a shift in light-

duty engines to gasoline direct injection (GDI), which has a sizeable effect on secondary 

organic aerosol formation. Fourth, the weather data (relative humidity, wind speed, and 

boundary layer) came from nearby weather stations. The Logan International Airport 

weather station is approximately six miles from the Harvard supersite. Distance between the 

Harvard supersite and weather stations may have led to weaker correlations between the 

weather variables and UFP trends.

While this study was conducted in the Boston area, the study results are likely generalizable 

to other U.S. cities, particularly those in the Northeast region. Still, it would be helpful to 

explore this generalizability in future research. This study is the first to quantify UFP 

penalties due to PM2.5 and S changes. If UFP controls are contemplated at the local, regional 

or national level, it would be advisable to further improve our understanding of the UFP 

penalties. Given the dynamic nature of UFP trends, one way to approach this would be to 

investigate short-term UFP concentration changes in relation to the weather, PM2.5 and S 

predictors as well as construction, equipment and policy changes.
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CONCLUSION

Long-term trends of PM2.5 mass and S concentrations demonstrated significant declines in 

Boston, MA over the 1999 to 2018 study period. These reductions had a small but 

significant impact on UFP trends. Improved understanding of the impact of PM2.5 mass and 

sulfur concentrations on UFP trends can inform future air quality control efforts at the local, 

regional and national level.
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IMPLICATIONS STATEMENT

Using one of the longest available time series of UFP concentrations (1999 to 2018), this 

study examined the hypothesis that long-term trends of PM2.5 mass and sulfur 

concentrations have an impact on UFP trends. We found that PM2.5 mass and sulfur 

reductions had a small but significant impact, i.e., penalty, on UFP trends. Improved 

understanding of the impact of PM2.5 mass and sulfur concentrations on UFP trends can 

inform future air quality control efforts.
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Figure 1. 
Time Series of Log UFP, 1999–2018
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Figure 2. 
Time Series of PM2.5 Mass, 1999–2018
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Figure 3. 
Time Series of S, 1999–2018
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Figure 4. 
Estimated Annual UFP Penalties Due to PM2.5 Mass and S Trends
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Table 1.

Comparison of Estimated Annual and Study Period UFP Penalties in Full Model vs. Model without Date 

Categories

UFP Penalty due to PM2.5 Mass (%) UFP Penalty due to Sulfur (%)

Annual (Full Model) 0.4 (0.2, 0.6) 0.5 (0.3, 0.7)

Annual (Without Date Categories) 0.5 (0.4, 0.6) 0.9 (0.8, 1.0)

Study Period (Full Model) 7.3 (3.5, 11.1) 9.9 (6.2, 13.7)

Study Period (Without Date Categories) 9.7 (7.4, 11.9) 17.4 (14.9, 19.9)
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